Program Structures for Non-proper Programs

R. C. Tausworthe
DSN Data Systems Development Section

Canonic structured programming forms the basis of an attractive software design
and production methodology applicable to proper programs (programs having but
one entry point and one exit point). Programs developed using this methodology
tend to be easier to organize, understand, modify, and manage than are unstruc-
tured programs. However, there are notable examples in which programs either are
inherently non-proper (usually, with more than one exit, rather than more than one
entry), or else suffer when forced to be structured. This article addresses ways of
extending the concept of structured programming to cover such cases; it is a report
of an ongoing research activity to examine potential Deep Space Network software

development standards.

l. Introduction

Canonic program control-logic structures, such as se-
quence, DOWHILE, and IFTHENELSE proposed by
Bohm and Jacopini (Ref. 1) and others (Refs. 2, 3) form
the basis of an attractive software design and production
methodology, known as “structured programming,” ap-
plicable to proper programs — those that have one point
of entry and one exit point. Such programs developed
using top-down modular, hierachic structured program-
ming techniques tend to be easier to organize, understand,
modify, and manage, especially when the canonic set
includes other simple extensions of the three above, such
as WHILEDO and CASE (Fig. 1).

However, there are typical cases where the strict
adherence to the “one-entry-one-exit” rule for a program
or program module is a hindrance, rather than a help, to

JPL DEEP SPACE NETWORK PROGRESS REPORT 42.21

effective software development. Structure for the sake of
structure should not overrule structure for the sake of
clarity.

One notable example of such counter-productivity,
occurs when one is designing a program that is capable of
detecting the existence of situations for which further
processing in the current mode is either useless or un-
necessary. Often, in such cases, the most desired, most
logical, and most clearly understood course is to divert
program control to a recovery mode or back to the user/
operator for subsequent decision making and manual
operations (Fig. 2).

The alternative to programming such abnormal exits
of a module is to introduce structure flags as necessary to
force these exits to the normal exit point; but then this
flag has to be tested each time a “normal” action in the

69

program comes up for execution. If an abnormal condi-
tion has occurred, the normal action must be bypassed
(Fig. 3). Bypassing is necessary until an appropriate nest-
ing level is reached that the appropriate recovery pro-
cedure can be invoked in a properly structured way. This
not only introduces a clutter of excess, distracting detail
to slow down the programmer, but it also creates a some-
what larger, slower program. Hence, besides interfering
with programmer effectiveness, strict adherence to
canonic proper-program structures has caused the program
itself to suffer.

1t is also the case in many of the higher level languages
that some statements can cause unavoidable, automatic
branching to prespecified or default program locations
when certain conditions occur. For example, in
FORTRAN and PL/1, executing the file-input statement
can result in normal input (the program continues at the
next statément), an end-of-file condition (the program
branches to a prespecified statement), or a file-error
condition (the program branches to a separately specified
statement). True “structured programming” (using
canonic structures) is thus not possible whenever such
statements appear.

Il. Criteria for Structuring Multi-Exit Modules

The context of structured programming obviously
needs to be extended, in such cases, to include con-
structs that fit the language and that will tend to increase
design productivity and program efficiency. But great
care must be taken in extending the basic set of struc-
tures, not to undo (or potentially undo) the progress that
canonic structures have contributed to software devel-
opment. Mills” (Ref. 3) proof of the correctness theorem
depends on the “one-entry-one-exit” character of pro-
grams. Permitting modules to have multiple exits (or
entries) can, therefore, be a very dangerous policy unless
that policy is limited to justifiable situations where cor-
rectness is not impaired. I shall judge candidate struc-
tures to augment the canonic set relative to the following
criteria:

(1) The top-down development and readability of the
program design must not be impaired by the ex-
tended structures.

(2) The hierarchic, modular form of the program must
be maintained using the extended structures.

(3) Program clarity and assessment of correctness on an
individual module basis must not be jeopardized.

70

(4) The situations under which an alternate exit of a
module is permissible must be limited to special
situations where the need is clear and desirable, or
unavoidable.

(5) The new structures must conform to the same
codability conventions used for the canonic set,
such as modular indentation of lines of code, easily
identifiable entry and exit points, and clear con-
nectivity of program modules.

Il. Structures for Multi-Exit Modules

Iterations and nestings of canonically structured proper
program modules always result in proper programs.
Whenever a branching (one entry, multiple exit) node
appears in a structure, there also appears a collecting
node and one or more process nodes within the structure
so arranged that the global view again has only one entry
and one exit.

The extension of this philosophy to modules having
multiple exits suggests the simple extension to structured
programs found in Fig. 4.

The entire structure is a proper module, although
module A obviously is not. However, if the function A
has been stated explicitly enough that the two exit con-
ditions are determinable, based on entry conditions to A,
then proof of correctness is conceptually the same as for
an IFTHENELSE structure. I shall use the convention
found in Fig. 5 to denote and emphasize the condition
for that other exit. The condition or event ¢ under which
the exit occurs is directly displayed for more clarity and
better understanding.

When there are more than two exits, these can be
accommodated by another configuration, analogous to
the CASE structure in Fig. 6.

The box A in Fig. 6 represents, for example, the way
end-of-file and file-error conditions are actually treated
in programming languages such as FORTRAN and PL/1.
Using the configuration shown permits file input modules
in such languages to take a structured appearance not
otherwise achievable,

Normally, T draw the collecting node of CASE and
IFTHENELSE constructs directly under the bottom
vertex of the decision symbol. However, the exits in Figs.
5 and 6 are unusual exits from a module, so I do not.
Normal flow is straight down.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

Looping structures can similarly be extended by this
technique, as shown in the four configurations in Fig. 7.
Structures (a) and (d) in Fig. 7 represent examples of
programs which endlessly process streams of input data
until the data quality falls below a specified condition ¢,
at which time, some alternate procedure is invoked. Struc-
ture (b) represents a program A in which ¢ senses an
abnormal condition; B is a recovery module which initial-
izes A for another try. The structure (c¢) would find appli-
cation, for example, when information is being inserted at
a terminal by A for processing by B. If ¢ detects an error,
the program returns to A for correct input; otherwise, it
continues.

IV. Hierarchic Expansion of Multi-Exit Modules

All of these configurations certainly satisfy the first
four criteria for extensions to the basic proper structures,
at least when viewed macroscopically, as Figs. 5, 6, and
7 are. But what happens when a multi-exit function (box)
at one level expands (to a flowchart) at the next hier-
archic design level?

The ANSI standard (Ref. 4) technique for denocting
hierarchic flowchart expansion is by way of striping the
box to be expanded, as shown in Fig. 8, The striped
module is given a procedural name, NAME, a cross-
reference identifier x, and a number n, on its current
chart. If the current chart identifier is m, then the box can
be uniquely identified as the Dewey-decimal number m.n,
and this number can be used for cross-referencing when
no ambiguity arises. When that is the case, x need not
appear at the point of striping.

Using top-down hierarchic-expansion methodology, one
starts the design of the module at the next level with a
functional description of the module and the conditions
under which the several exits occur. He then proceeds to
design an algorithm to perform the intended action using
the usual canonic structures. In addition, he perhaps finds
occasion to use one or all of the configurations of Figs. 5,
6. and 7. At some point, then, he breaks away from proper
program constructs, to divert the flow of control to the
alternate module exit(s). He does this by replacing a box
normally appearing in a structure by an exit symbol, as
shown in Fig. 9.

The flowchart which results has one normal (structured)
~ exit point, and one or more exira-normal (unstructured)
exits. It is worthwhile pointing out again that the extra
exits may derive from perfectly normal non-pathological

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

events. For example, when reading data from a file, it is
a very common practice to read until an end-of-file indi-
cation occurs. Hence, the alternate exit from a box labeled
“input from file” taken when the end-of-file occurs cannot
be said to be an “abnormal” event. I shall refer to it
rather as a paranormal exit (para from the Greek meaning
“beside”), to differentiate it from the (normal) exit taken
after the more usual, stated function (reading elements
from the file) has taken place, and from a truly abnormal
exit (one in response to an abortive event).

Paranormal.events thus lie between the normal and
abnormal; they are the simple “alternate exits” which
should be allowed in the software designer’s bag to per-
mit him, among other things, to create modules which
can recover efficiently from minor failures in the program
or from erroneous input data.

On the flowchart of a multi-exit module, several occur-
rences of each paranormal exit might appear, as depicted
in Fig. 10. How does such a flowchart stand in relation to
the criteria I gave earlier? To me, flow through the chart
does not appear disorganized, nor do any of the first four
criteria seem violated; some branches just terminate early,
back to an activity defined at a previous hierarchic level,
that's all. The expansion of a multi-exit symbol as a
separate flowchart is thus not objectionable, in my
opinion.

However, if a multi-exit chart such as that in Fig. 10
were to replace its flowchart symbol at the previous level
in the hierarchy, the new expanded chart would have
crossing flowlines. A simplified case of this is illustrated
in Fig. 11.

Non-planar flowcharts are particularly annoying to
anvone trying to understand a program, because crossing
flowlines detract from readability, reduce clarity and
understanding, impair assessment of correctness, and
attack the program organization generally. Flowcharts
with on-page connectors to avoid the crossings are no
better. Programming conventions which can lead to such
difficulties are of questionable utility and are clearly a
violation of the criteria I stated earlier.

The violation comes as the result of substituting the
flowchart with paranormal exits back in place of the
simple box at the earlier level. Neither of the flowcharts
—that with the multi-exit box, nor its expansion at the
next design level—is objectionable on a separate basis.
For example, there is no objection in Fig. 10 being the
next-level embodiment of box A in Fig. 6. But, there is

71

objection to substituting Fig. 10 for box A in Fig. 6, be-
cause then the flowlines become jumbled.

The exit points of canonic structures, coded or flow-
charted, are readily located, because they invariably
either appear at the bottom, or else result as the immediate
consequence of the loop test, at the top. Logical flow in
nested structures having exists somewhere in the middle
is naturally going to be harder to read and follow, even
if the flowchart remains planar. Hence even if flowlines
don’t become,_jumbled as one flowchart replaces its box
at the preceding level, the resulting chart is very apt to
be less readible, because of the lack of uniformity in sub-
structure exit locations.

These objections are somewhat at variance with the
way canonically structured flowcharts at one hierarchic
level can replace a striped symbol at the preceding level
without violating the criteria given earlier. The way to
avert such difficulty is clearly not to redraw flowcharts at
one level, substituting flowcharts from the next level for
multi-exit striped modules. Fortunately, this restriction is
superficial in a top-down design, because flowcharts are
developed from striped symbols, rather than vice-versa.

V. Coding Multi-Exit Structures

I have not addressed how the structures stand in rela-
tion to the fifth criterion (codability). Obviously, there
are times when the coded procedure corresponding to a
striped-module flowchart might need to appear directly
in-line for speed efficiency, rather than a coded call to the
procedure. In canonic structures, this presents no prob-
lem, but in multi-exit structures, there is again apt to be a
problem identifying the connectivity of the code. More-
over, if it were deemed objectionable to do such replace-
ment of flowcharts for striped multi-exit modules on a
2-dimensional medium, it seems to me even more objec-
tionable to allow substitution of multi-exit code for pro-
cedure calls in the program, a linear medium.

For readability, the following modular coding formats
are useful to implement the permissible extended program
structures.

Capitalized words in the formats below identify macros
for control structures to be translated into whatever
language is being used to write the program. The italic
symbols identify programming language strings: ¢ is a
condition (event) which causes the paranormal cessation
of the procedure called by statement s or of the statement

72

sitself; the statements s, - - -, s, and s,,,- - -, s, are nested
modules of canonic and extended structures. The skeleton
flowline annotations are added merely for readability.
Translation of the formats above into programming lan-
guage statements can be done manually or by an appro-
priate preprocessor, such as the CRISP processor (Ref. 5).

(1) IF NO ¢ DURING s

:—>THEN s,
. S,

S"
END

:—>ELSE s,

SHH 1
.
.

s,
ENDBLOCK

Ife=c,c, ", c,
then use CASE
structures below
for ELSE module,
with ENDBLOCK
for final END:

CASE c¢;:s,

Sinst
.
.

$p
END

(2) WHILE NO ¢ DURING s

T s

T Sz

(I

T 'S\)I
«—<«REPEAT

(3) UNTIL NO ¢ DURING s

T s

7 S2

(.

T s

« <« REPEAT

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

(4) LOOP
T Si
T S2
T
T ‘S."
«—«REPEAT IF ¢ DURING s

(5) LOOP
T s
T s
[
T s

«<«REPEAT UNLESS ¢ DURING s

V1. Abnormal Terminations of Structured
Programs

The multi-exit structures discussed so far will extend
structured-programming techniques to cases where pro-
gramming to handle events using canonic structures could
prove counter-productive. However, there are abnormal
contingencies encountered during a top-down design that
may not have been fully identified at earlier levels as
part of a module’s normal function. Yet, in order for the
program to perform correctly, the abnormal situations
must be dealt with, and hopefully, not by redesigning the
previous levels.

For example, it may be known intuitively ahead of time
that some arithmetic operations can result in overflow-
errors under certain (perhaps unknown) input conditions.
But it may not be knowable, until an actual algorithm is
designed, just where the overflows will occur, or what
the input conditions that cause them will be.

In other cases, there may be knowable, specifiable
contingencies which represent abnormal departures from
the program’s normal functionings, which the program
must respond to (or recover from). A decision table drawn
up for this program would likely classify such abnormal
conditions into the “ELSE-rule” category—all cases not
specifically defined by the program’s intended behavior
under normal, error-free input.

In some cases, recovery procedures can be instituted by
the program itself; in others, operator intervention may be
required, Different types of abnormalities will concep-
tually require entirely separate recovery procedures. For
example, a program which generates a report from several

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

files may conceivably be asked to complete the report
because some identifiable parts of the report may yet be
useful, even though one of the files continues to be read
occasionally in error. However, in the same program,
execution may be halted and control returned to the
operator if one of the files cannot be found.

Abnormal exits to many unstriped modules are often
overlooked because the abnormal exit is implied in the
code for that module. A flowchart box Jabeled “A=B+C”
would, for example, be coded in FORTRAN as
“A=B+C”; but if A and B are large enough, an overflow
trap automatically kicks the control to some error-
handling procedure. Yet these connections are seldom put
on the flowchart. Indeed, if such implicit actions were
required to be drawn onto a flowchart, as in Fig. 12, few
“structured programs” would exist. And imagine all the
confusion trying to follow all the jumbled lines!

A similar statement holds concerning abnormal termi-
nations of striped modules. In order for us to be able to
design and program using what appear to be structured
programming techniques, it is usually necessary for us
to suppress the flowchart connections for abnormal situa-
tions, at least down to that design level where an ab-
normal event is sensed explicitly and an explicit branch
to the recovery procedure appears. But if program
modules—unstriped, as well as striped—may have
abnormal contingencies whose connections may not ap-
pear in an explicit form at a given design level, then pro-
gram response can only be fully and readily assessed if
the conventions for suppressing the connectiors are easily
remembered, fully understood, and rigorously adhered to.

Of course, it may be entirely possible that a program
can invoke a recovery procedure and return to normal
processing in a purely structured way. Such cases, even
though induced by abnormal events, nevertheless can be
handled by the normal and paranormal-exit structures
already discussed. It is the others that must be covered by
the convention.

The rule for displaying abnormal terminations which,
to me, seems most in keeping with the first four criteria
given earlier is the following: Flowlines corresponding to
abnormal terminations exiting from modules may be
omitted at all hierarchic levels beyond that at which the
recovery module appears on a structured flowchart and
which also shows the flowline connection from the parent
module which contains the nested submodule(s) from
which the abnormal exit is made.

73

Figure 13 depicts a chart at which a particular ab-
normal termination first appears. The recovery procedure
appears as a module (here named RECOVERY) exe-
cuted whenever the abnormal error event occurs in later
levels. The exploded views of striped submodules of B
being aborted do not show either the error condition or
the module termination symbol labeled “RECOVERY”
unless there is an explicit need to do so (e.g., when error
is actually tested as an unstriped module), or unless show-
ing them contributes to readability, understandability,
assessment of correctness, etc. As the latter of these repre-
sents an optional case, the abnormal exit can appear
merely as a comment, as shown in Fig. 14.

VII. Labeling Flowchart Exits

There is obviously a need for correct and consistent
labeling of the exit terminals of a module flowchart, so
that the reader can tell immediately and with certainty
whether it is a normal, paranormal, or abnormal sub-
program exit, or a subroutine return. Further, he must be
able to locate the procedure next to be executed following
the exit easily and unambiguously.

The conventions summarized in Fig. 15 (of which only
a subset may actually be operable within a given system)
contain an identifier within the terminal symbol, and in
some cases, a module number designator which labels the
point of continued activity. This number, denoted by n
in the figure, can be optional whenever n is a module
appearing on the same chart at the immediately preced-
ing level as the current striped module being terminated,
such as is true for cases (c) and (e) of the figure. It may
be supplied to aid in locating the next procedure. The
number is mandatory, however, for an abnormal exit to
an unnamed procedure (case (f)) defined at an earlier
level, or to a named procedure (case (g)) when there is
more than one named abnormal procedure in the pro-
gram. The former mandate is clearly one to identify
program connectivity unambiguously; the latter is only
for ease in locating the referenced procedure in the docu-
mentation.

VIll. Coding Module Extra-Normal Exits

A top-down program may be written, as I indicated
earlier, in a format whereby each module has its entry
at the top and a normal (structured) exit at the bottom.

74

Any exits in between are either calls (transfers) to modu-
lar procedures (usually, but not always) farther down in
the code, or extra-normal transfers to points within
modules at previous design levels, always higher up in
the code.

Calls can be classified by the data-space state upon
initiation of the called procedure. For example, sub-
routine calls pass the return address and optional argu-
ments to the subroutine procedure, often in a stack con-
tiguration. Coding for the normal exit (in the subroutine
case, RETURN) reconfigures the data space for proper
resumption of program execution. The same consideration
must be given to extra-normal exits. (In the subroutine
case, these exits must also unstack return addresses and
arguments).

Abnormal terminations may transfer back through an
arbitrary number of levels, all at once, to a program re-
covery procedure. Hence, any data-space assumptions in
effect at the higher level must be restored prior to the
transfer. Paranormal exits may likewise transfer back
through a number of levels, but only one flowchart level
at a time (although in an optimized object code listing,
this could appear as a single jump after appropriate data-
space recovery, as above).

Just as it facilitates flowchart readability and under-
standability to identify normal, paranormal, and abnormal
exits separately (but consistently), it is likewise the case
with the code corresponding to these exits. Unfortunately,
most programming languages do not have separate
branching statements for all the cases in Fig. 15. How-
ever, coding conventions may be adopted, either in the
form of annotations or, better yet, macros, to effect and
display the program module connectivity. Table 1 sum-
marizes such a set of conventions.

IX. Conclusion

This paper has demonstrated that the concept of struc-
tured programming can be extended to multi-exit
structures in a natural way. The methods preserve almost
all of the advantages of structured programming: top-
down development, hierarchic expansion, program modu-
larity, and assessment of correctness. At the same time,
they relax structural constraints to take advantage of more
efficient program configurations than are possible with
canonic structures.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

Acknowledgment

I would like especially to thank Dr. James Layland for his review, comments,
and helpful discussions during the preparation of this paper.

References

1. Bohm, C., and Jacopini, G., “Flow Diagrams, Turing Machines and Languages
With Only Two Formation Rules,” Communications of the ACM, Vol. 9, pp.
366-371, 1966.

2. Dijkstra, E. W., “Structured Programming,” in Software Engineering Tech-
niques, NATO Science Committee, edited by J. N. Burton and B. Randall.
Kynoch Press, Birmingham, England, April 1970. Available from Scientific
Affairs Div., NATO, Brussels, Belgium.

3. Mills, H. D., “Mathematical Foundations for Structured Programming,” IBM
Document FSC72-6012, Federal Systems Div., IBM, Gaithersburg, Md., Febru-
ary 1972,

4. “American National Standard Flowchart Symbols and Their Usage in Informa-
tion Processing,” ANSI-X3.5-1970, American Nationa] Standards Institute, Inc.,
New York, N.Y., Sept. 1, 1970.

5. Tausworthe, R. C., “Control Restricted Instructions for Structured Program-
ming—CRISP,” to appear in next issue.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

Table 1. Module exit conventions

Type Meaning

SYSTEM Program termination, return con-
trol to system

STOP Program termination, return con-
trol to operator

END n Subprogram normal termination.
Control transters to module n at
preceding level; n is specified
optionally

RETURN Subroutine normal termination.
Control returns to calling module

EXIT event TO n Paranormal exit. Control passes
to event case, program module n
at the preceding level; TO n
specified optionally

ABORT TO n Abnormal exit to module n at
earlier level; n is mandatory

ABORT TO ABNAME AT n Abnormal termination to module
named ABNAME, numbered n;
AT n is optional

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

(a) Sequence (b) WHILEDO (¢) IFTHENELSE

-

]
L]

() CASE
(d) DOWHILE

Fig. 1. Canonic program structures

ENTRY

l

NORMAL PROGRAM MODE

NESTED MODULE / ABNORMAL EXIT
/ PROGRAM

RECOVERY
MODE

D —t

|

NORMAL EXIT

Fig. 2. Abnormal exit from a Nested Structured Program

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

77

78

(a) (b}

A4 A
SRS, >
24 R g

[p}

Fig. 3. Abnormal condition (a) unstructured program in which p and r are tests which indicate further

execution is useless; R is recovery module which then initiates program restart, (b) structured
form of (a)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

reason 2

reason {

=4 c

Fig. 4. Multiple exits configured into
an IFTHENELSE.:like structure

answer &

answer |

Fig. 5. Multi-exit program configura-
tion with exit condition explicitly
labeled

answer |

answer 2 answer n

Fig. 6. Multi-exit CASE-like configuration with exit
condition explicitly labeled

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

[s4]

(e}

Fig. 7. Looping configuration with multi-exit structures

IDENTIFIER

A BOX ON
CHART m

CROSS~REFERENCE

BOX NUMSER,
THIS CHART

CROSS-REFERENCE
IDENTIFIER

FLOWCHART
FOR NVAME
MODULE

Fig. 8. Hierarchic expansion of striped flowchart symbol

79

Oa

I
I
| i
|
l
I

TO STRUCTURED
[: I TERMINATION CROSSING
T C_) FLOWLINE
0
STRUCTURED UNSTRUCTURED UNSTRUCTURED !
TERMINATION TERMINATION TERMINATION

Fig. 9. Modes of generating multiple exits in otherwise
structural programs |_ L 4 __J
NORMAL EXTRA-NORMAL

I

entry

Fig. 11. Crossing flowlines can appear when the flowchart of a
—<57 multi-exit box replaces the box
exit |

exit 2{

frue

o

OVER
FLOW

OVER
A=8+C |FLOW

exit 1

TO OVERFLOW
RECOVERY

normal
exit

Fig. 10. Possible expansion of a module with two T
extra-normal exits

Fig. 12. Implicit abnormal contingencies in a simple
“structured’’ program

80 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

PROGRAM
A

B RECOVERY

error ¢

{ STOP)

‘ SYSTEM)

Fig. 13. A Program A THEN B, in which an occurrence of error
during the execution of B initiates the RECOVERY procedure.

If recovery under criterion ¢ is possible, B is tried again; if
recovery is not possible, control returns to the operator

Submodule
of B

Explicit references
to error , RECOVERY

RECOVERY

This module Abnormally
may have | _]exitsto

error exits RECOVERY
to RECOVERY upon error

also

Optional references
to abnormat exits

RECOVERY

Fig. 14. Notation for abnormal module terminations at levels
deeper than RECOVERY

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-21

n

(b) Program (¢) Subprogram nor~
termination mal termination.
Return control Control transfers
to operator to module 7 at

preceding level;
n specified
optionally

n n n
RETURN ABORT ABNAME

(g) Abnormal exit
to named proce-

(a) Program
termination
Return control
fo system

(d) Subroutine nor- (e) Paranormal exit. (f} Abnormal exit
mal termination. Control passes to to unnamed

Control returns flowline labeled procedure which dure ABNAME
to calling event leading'to begins at module which has
module module 7 at a n at earlier tevel-1 chart

level; 7 speci~ number 72; 77

previous fevel;
n specified fication is specificafion is
optionally mandatory mandatory if

program has more
than one named
abnormal
recovery proce=
dure

Fig. 15. Module termination symbol annotation conventions

81

